

10EC52

(06 Marks)

(06 Marks)

Fifth Semester B.E. Degree Examination, Aug./Sept. 2020 Digital Signal Processing

Time: 3 hrs.

1

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part. 2. Use of Filter Tables are not permitted.

<u>PART – A</u>

- a. Find the N point DFT of the sequence x(n) interms of Cos function x(n) = {1/5, 0 ≤ n ≤ 2, 0, otherwise
 b. Compute the 10-point DFT of the sequence x(n) = cos(2πn/10), 0 ≤ n ≤ 9.
 c. Let a sequence x(n) = {2, 3, 2, 1} and its DFT x(k) = {8, -j2, 0, j2}. Compute :
 - i) DFT of the 12-point signal described by x_1 (n) = {x(n).x(n).x(n)}
 - ii) 12-point zero interpolated signal $h(n) = x\left(\frac{n}{3}\right)$. (08 Marks)
- 2 a. Let X(k) denotes a 6-point DFT of a sequence x(n) = {1, -1, 2, 3, 0, 0} without computing the IDFT, determine the 6-point sequence g(n) whose 6-point DFT is given by G(k) = W₃^{2k}X(k) (06 Marks)
 - b. Evaluate $y(n) = x(n) \circledast_8 h(n)$ for the sequences $x(n) = e^{j\pi n}, 0 \le n \le 7$ h(n) = u(n) - u(n-5). (06 Marks)

c. Give the 8-point sequence x(n) is $x(n) = \begin{cases} 1, & 0 \le n \le 3 \\ 0, & 4 \le n \le 7 \end{cases}$. Compute the DFT to the sequence (1, & n = 0)

$$x_1(n) = \begin{cases} 0, & 1 \le n \le 4 \text{ . Use the suitable property of DFT.} \\ 1, & 5 \le n \le 7 \end{cases}$$
 (08 Marks)

- 3 a. Find the output y(n) of a filter whose impulse response h(n) = { 1, -2, 1 } and input signal x(n) = {3, 1, -2, 1, -1, 2, 4, 3, 6 }. Use a 8 point circular convolution and also use over Lap-add method.
 - b. Calculate the percentage saving in calculations in a 512-point radix 2FFT, when compared to direct DFT. (05 Marks)
 - c. What is signal segmentation? Explain the procedure used for over Lap save method.

(07 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8=50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

10EC52

4	a.	signal flow graph, compute the DFT of the sequence. y(p) = (1, 1, 1, 1, 1, 0, 0, 0)		
	b.	Consider a finite length sequence $x(n) = \{1, 2, 3, 4, 5, 6\}$ find X(3) using	g Goertzel	
		algorithm. Assume initial conditions are zero.	(06 Marks)	
<u>PART – B</u>				
5	a. b. c.	Explain Analog to Analog Frequency Transformation. What is Chebyshev polynomials and mention its properties. Find the order of a Low pass Butterworth filter to meet the following specification $\delta_P = 0.001$, $\delta_S = 0.001$	(05 Marks) (05 Marks) ^{S.}	
	d.	$\Omega_P = 1$ rad/sec, $\Omega_S = 2$ rad/sec What are the advantages and disadvantages of IIR Filters?	(05 Marks) (05 Marks)	
6	a.	Obtain Parallel form Realization of system Transfer function	· · · ·	
		$H(z) = \frac{1 + \frac{1}{2}z^{-1}}{\left(1 - z^{-1} + \frac{1}{4}z^{-2}\right)\left(1 - z^{-1} + \frac{1}{2}z^{-2}\right)}.$	(10 Marks)	
	b.	What are the features of a FIR Lattice structure?	(05 Marks)	
	c.	Realize the following FIR system with minimum number of multipliers $h(n) = \{-0.5, 0.8, -0.5\}$	(05 Marks)	
7	a.	A filter is to be designed with the following desired frequency response		
		$H_{d}(e^{jw}) = \begin{cases} 0, & \frac{-\pi}{4} \le w \le \frac{\pi}{4} \\ e^{-j^{2w}}, & \frac{\pi}{4} \le w \le \pi \end{cases}$		
		Determine the filter coefficient $h_d(n)$ if the window function is defined as		
		$w(n) = \begin{cases} 1, & 0 \le n \le 4\\ 0, & \text{otherwise} \end{cases}$	(10 Marks)	
	b.	Find the impulse response $h(n)$ of a linear phase FIR filter of length = 4 for	which the	
		frequency response at $w = 0$ and $w = \frac{\pi}{2}$ is specified as		
		$H_r(0) = 1$ and $H_r\left(\frac{\pi}{2}\right) = \frac{1}{2}$	(07 Marks)	
	c.	Mention the advantages of Window Technique.	(03 Marks)	
8	a.	 Design an IIR digital filter that when used in a prefilter A/D – H(z) – D/A strustisfy the following analog specification of Chebyshev filter. i) LPF with – 2dB cutoff at 100Hz ii) Stopband attenuation of 20DdB or greater at 500Hz 		
	b.	iii) Sampling rate 4000 samples/sec Obtain the digital filter, equivalent of the analog filter shown in Fig Q8(b). Usir	(14 Marks) ng impulse	
		invariance method. Assume $f_s = 8f_c$, where f_c – cutoff frequencies of the filter.		
		$V; (r)$ $T = V_0(r)$		
		V, (G)		
		Fig Q8(b)	(06 Marks)	
		* * * 2 of 2 * * *		
	ć	* * * 2 of 2 * * *		